
Case Study: Tcl in ModelSim 25-June-2002 © Copyright 2002, DOULOS Ltd. All Rights Reserved 1

Using Tcl/Tk in
ModelSim to create

custom displays
A worked example

Jonathan Bromley, Doulos Ltd

Contact Doulos for information about other HDL training and
project support services. Visit the Doulos website for tips, code
samples and tutorials.

Doulos Ltd.
Church Hatch

22 Market Place
Ringwood

Hants. BH24 1AW
Tel: +44 (0)1425 471223
Fax: +44 (0)1425 471573
Email: info@doulos.com

www.doulos.com

© Copyright 2002 Doulos Ltd. All rights reserved.

The information contained herein is the property of Doulos Ltd and is
supplied without liability for errors or omissions. No part may be used,
stored, transmitted or reproduced in any form or medium without the written
permission of Doulos Ltd.

All trademarks acknowledged.

Doulos Ltd wishes to thank Mentor Graphics staff who have helped in the
creation of this example. However, any remaining errors or omissions are

entirely the responsibility of Doulos Ltd.

Tcl/Tk in ModelSim � Custom Displays

2 © Copyright 2002, DOULOS Ltd. All Rights Reserved Case Study: Tcl in ModelSim 25-June-2002

The value of custom displays in simulation

HDL simulations are used for many purposes. In early stages of the design cycle, an HDL
simulator can be a powerful tool for checking that a hardware design block is functioning in the
expected way, providing a useful "sanity check" that the designer has correctly interpreted the
original specification.

Sometimes, however, it's quite difficult to relate simulation output to the real-world behaviour of
the system. For example, a subsystem that generates RGB video output will provide the red,
green and blue digitised video data, and one or more sync signals. Except in the very simplest
cases, it's extremely hard to imagine the picture that these signals will represent. Visualisation of
this kind of output is therefore a powerful tool for gaining insight into the device-under-test's
behaviour, and can be a useful additional weapon in the verification engineer's armoury.

Stand-alone visualisers

It is, of course, possible to extract output data from simulation as a file which can then be
visualised later using a stand-alone program, perhaps written in C. This is often the most flexible
approach, but it denies you one of the key potential benefits of visualisation: the ability to relate
visualised behaviour directly to signals in the device under test, as the simulation progresses or
as a cursor is moved in the simulator's waveform display.

Integrated visualisers with Tcl/Tk

ModelSim has the attractive feature that it comes with a built-in Tcl/Tk system. Tcl, originally
designed as a script language, is in fact a highly competent programming environment; and Tk
provides a flexible and easy-to-use toolkit for graphical user interface development. The tight
integration between Tcl/Tk and ModelSim makes it exceptionally straightforward to add new
display functionality to your ModelSim simulations.

Case Study: Tcl in ModelSim 25-June-2002 © Copyright 2002, DOULOS Ltd. All Rights Reserved 3

An example: Phase/amplitude plot

As an example of how to create customised displays for your ModelSim simulations, we look at
the task of providing a polar plot of the output from a phase/amplitude demodulator.

Quadrature Amplitude Modulation (QAM)

In many telecomms applications a carrier signal is modulated using complex amplitude
modulation in which two separate data streams are modulated on to the carrier and a second
carrier 90° out-of-phase with the first. The two modulation components are commonly known as
the in-phase and quadrature or I and Q components. The demodulator's output therefore
consists of two separate signals I and Q, each of which is an analog value digitised to some
appropriate number of bits. To understand how the digital data has been encoded on these
signals, it's usual to represent them on a polar diagram (sometimes called an Argand diagram) in
which the X-axis represents the I component, and the Y-axis the Q component. The demodulator
output at any given moment is then represented by a single point on the polar diagram. If these
points are accumulated over time, we get a "constellation plot" which should show the I/Q points
grouped in discrete "clouds", each cloud representing one combined value of the transmitted
data. Naturally, if the clouds overlap then there is some uncertainty in the decoding; this overlap
can be caused by noise or other artefacts of the transmission medium, or by some inadequacy of
the demodulator itself.

The constellation diagram gives a very clear and easily understood representation of the
demodulated data stream, but it is almost impossible to visualise it given only the stream of
numbers on the I and Q outputs.

We need to visualise the polar diagram!

To do this, we need to add some software � written in Tcl/Tk � to our ModelSim simulation. The
following diagrams indicate how this could be done.

Tcl/Tk in ModelSim � Custom Displays

4 © Copyright 2002, DOULOS Ltd. All Rights Reserved Case Study: Tcl in ModelSim 25-June-2002

The Demodulator

The diagram below shhows the overall structure of a typical digital quadrature demodulator. The
IF input is a digitised data stream, sampled at the demodulator's system clock rate. The I and Q
outputs are also digital data streams. In our specimen device under test (DUT), I and Q are also
sampled at the system clock rate. In a practical demodulator they may be sampled at a
somewhat slower rate.

68

Quadrature Demodulator DUT

×
cos

Oscillator
sin

Integrate
and dump

filter

Loop filter

Phase
error

detector

×
Integrate
and dump

filter

Modulated
IF input

I output

Q output

Testing the demodulator in simulation

A test bench for the demodulator needs to apply an appropriate modulated IF signal. Using
VHDL's ieee.math_real library package it's easy to use sin() and cos() functions to
generate the appropriate phase modulated signal as a real (floating point) value, and then
"digitise" it using a type conversion to integer. The next diagram shows an overview of how a
simple test bench might work, together with the polar diagram visualisation that we hope to
achieve.

Case Study: Tcl in ModelSim 25-June-2002 © Copyright 2002, DOULOS Ltd. All Rights Reserved 5

69

Quadrature Demodulator Testbench

×

cos
Oscillator

sin

Integrate
and dump

filter

Loop filter

Phase
error

detector

×
Integrate
and dump

filter

DUT

process
begin

...
end

process
begin

...
end

i2+q2i2+q2

ModelSim wave window

Custom
polar plot

Stimulus

Calculate
signal strength

Key Challenges

Any GUI-based programming task like this requires careful attention to detail in order to give a
good impression to the user, with all the required functionality being available in an appropriate
way regardless of the user's sequence of actions. However, when we try to integrate custom
displays into a ModelSim simulation there are several new challengest that are specific to the
ModelSim environment.

Get signal names and values from ModelSim wave window

Once the user has set up a simulation, they are likely to use the ModelSim wave display window
as a first "point of contact" when trying to visualise the DUT's behaviour. We need to link our new
display to the wave window, picking the signal names and their required values from the wave
display. To achieve this we need to make extensive access to ModelSim's WaveTree widget,
which is the object used by ModelSim to set up the list of signal names and values that you see
on the left of a wave window. There are numerous Tcl commands giving access to all aspects of
this widget. The code fragments in the next diagram give an indication of the kind of operations
you'll need to perform.

Tcl/Tk in ModelSim � Custom Displays

6 © Copyright 2002, DOULOS Ltd. All Rights Reserved Case Study: Tcl in ModelSim 25-June-2002

70

Extracting Signal Names from Wave Tree

Check signal selection in the invocation window.

set selList [$win curselection]

if {[llength $selList] != 2} {

error "argand: must select 2 signals to plot"

}

Check they are all set to decimal radix.

foreach sig $selList {

if {[string compare [$win itemcget $sig -radix] decimal]} {

error "argand: selected signals must have decimal radix"

}

}

OK, we have a good signal selection. Remember their names.

foreach sig $selList {

lappend sigList [$win get4 $sig]

}

Check signal selection in the invocation window.

set selList [$win curselection]

if {[llength $selList] != 2} {

error "argand: must select 2 signals to plot"

}

Check they are all set to decimal radix.

foreach sig $selList {

if {[string compare [$win itemcget $sig -radix] decimal]} {

error "argand: selected signals must have decimal radix"

}

}

OK, we have a good signal selection. Remember their names.

foreach sig $selList {

lappend sigList [$win get4 $sig]

}

Which signals are selected?Which signals are selected?

Radix chosen by user?Radix chosen by user?

Detailed signal namesDetailed signal names

In all these examples, win is a Tcl variable containing the name of the WaveTree widget we're
interrogating. Typically, for the default wave window .wave, this will be .wave.tree but in
general it will be <windowname>.tree where <windowname> is the specific wave window in
use.

Note that, as with most Tk standard widgets, the name of a WaveTree widget acts as a
command. Followed by one of several subcommands such as itemcget, it allows us to access
many properties of the widget.

Note also that we've assumed that the user has already selected (highlighted) the two signals in
the wave window that should be plotted on our diagram.

Dynamically link polar display to current wave cursor position

The most important use of the new polar plot is to allow the designer to find situations where the
DUT is giving the wrong results (as visualised on the polar plot), and then inspect other DUT
signals at the same moment of simulation time, to understand what's gone wrong. To do this we
need to arrange for the polar plot to be updated dynamically to reflect the chosen signal values at
the current wave cursor position. Luckily we can "see inside" ModelSim to find the current cursor
location. ModelSim maintains a great deal of information about its internal state in a Tcl array
variable vsimPriv(), and although much of this data is of no concern to us, it's useful to know
that vsimPriv(acttime) contains the time position of the currently active wave window cursor.
Better still, we can use Tcl's trace facility to monitor any updates to this variable � for whatever

Case Study: Tcl in ModelSim 25-June-2002 © Copyright 2002, DOULOS Ltd. All Rights Reserved 7

reason � and whenever it's updated, we can re-plot our custom display to keep pace with it.
Check out online help for the Tcl trace command for more details.

71

Linking Custom Plot to Cursor Location

Hook it to wave window cursor changes

global vsimPriv

set privArgand($index,trace) [list privArgand_proc trace $index]

trace variable vsimPriv(acttime) w $privArgand($index,trace)

...

...

...

proc privArgand_proc {option index args} {

...

switch -- $option {

...

trace {

Cursor was moved or swapped, or simulation time advanced.

Update the display.

privArgand_proc getValues $index

privArgand_proc replot $index

}

...

Hook it to wave window cursor changes

global vsimPriv

set privArgand($index,trace) [list privArgand_proc trace $index]

trace variable vsimPriv(acttime) w $privArgand($index,trace)

...

...

...

proc privArgand_proc {option index args} {

...

switch -- $option {

...

trace {

Cursor was moved or swapped, or simulation time advanced.

Update the display.

privArgand_proc getValues $index

privArgand_proc replot $index

}

...

Currently active cursor timeCurrently active cursor time

Save script in a variableSave script in a variable

One proc + options does everythingOne proc + options does everything

This code fragment also illustrates another idea that's very useful when creating add-ons for
ModelSim. The ModelSim environment creates and uses a very large number of new variables,
and it would be painfully easy for our code to re-define or re-use those variable names. To
minimise this risk, we use a Tcl array variable with the suitably unlikely name privArgand() to
store all data related to our custom plot. Similarly, we avoid defining too many new Tcl procs by
creating just one proc to do all the work, and giving it a range of subcommands so that it can
provide a wide range of functionality.

Create polar plot using new menu item in wave window

So that our users have easy access to the new functionality, we need to add a new menu item to
each wave window. ModelSim makes this very easy: it provides utility commands add_menu
and add_menuitem to simplify the task of inserting an item into ModelSim's rather complicated
menu structures (don't try doing it using the traditional Tcl/Tk menu widgets � ModelSim's menus
add an extra layer of complexity!). Better still, the PrefWave(user_hook) variable contains a
user-specified Tcl list of commands that should be executed whenever any new Wave window is
created. In the modelsim.tcl file, which is automatically read by ModelSim at startup, we can
include commands to build this list. At the same time, it's useful to source the main script
argand.tcl that provides most of the new plotting functionality.

Tcl/Tk in ModelSim � Custom Displays

8 © Copyright 2002, DOULOS Ltd. All Rights Reserved Case Study: Tcl in ModelSim 25-June-2002

73

Hooking at ModelSim Startup

Read the constellation plot code into Tcl

source argand.tcl

Proc to add the appropriate menu item to any wave window

proc wave_hook {w} {

add_menu $w plots

add_menuitem $w plots Polar [list argand $w]

}

Hook this stuff into every new ModelSim wave window

lappend PrefWave(user_hook) wave_hook

Read the constellation plot code into Tcl

source argand.tcl

Proc to add the appropriate menu item to any wave window

proc wave_hook {w} {

add_menu $w plots

add_menuitem $w plots Polar [list argand $w]

}

Hook this stuff into every new ModelSim wave window

lappend PrefWave(user_hook) wave_hook

ModelSim tells us which
window invoked the hook
ModelSim tells us which
window invoked the hook

modelsim.tclmodelsim.tcl

Other Coding Techniques

Full Tcl code for this example is available from the Doulos web site at www.doulos.com/tcl
together with a sample DUT and testbench written in VHDL.

! Please note: The DUT is not intended to be a good example of how to build a
demodulator! It has very poor performance, in part because we wanted to show how
the polar plot can illustrate this behaviour.

The Tcl code has been very extensively commented to try to explain the techniques used. It
includes examples of a range of useful tricks:

• using complicated strings to form array variable subscripts that are guaranteed to be unique

• using an index integer to construct array subscripts that are unique to each instance of the
polar plot widget

• using Tcl's catch command to handle things that might possibly fail at run time

• using canvas tags to make it easy to keep track of items that have been drawn on a graphics
canvas

We welcome your feedback by email to info@doulos.com and hope that this example will
prompt you to experiment with other extensions to ModelSim.

